DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Philipp Warode

Research assistant at the chair of operations research

HU Berlin, Wirtschaftswissenschaftliche Fakultät
Spandauer Straße 1
10178 Berlin
+49 (0) 30 2093 99576
philipp.warode@hu-berlin.de
Website


Projects as a member

  • MI8

    Understanding and Improving Traffic with Uncertain Demands

    Prof. Dr. Max Klimm

    Project heads: Prof. Dr. Max Klimm
    Project members: Philipp Warode
    Duration: 01.06.2017 - 31.12.2019
    Status: running
    Located at: Humboldt Universität Berlin

    Description

    Traffic and logistic networks are among the most vital infrastructures of modern civilization providing access to economic activities, work, health care, and social and cultural life. However, the huge benefits of private and commercial traffic are accompanied by severe burdens in terms of congestion, exhaust gas pollution and land consumption. In the past years, we witnessed the emergence of several new car-related technologies that have the potential to fundamentally change the way traffic networks are managed and used: navigation devices with real-time information allow each traffic participant to make an informed decision concerning the route choice; electrical and hybrid vehicles allow mobility with reduced carbon-dioxide footprint; car-to-car and car-to-infrastructure communications pave the way to a more coordinated traffic, ultimately culminating in the use of autonomous vehicles. The ubiquity of navigation devices and car communication today produces a wealth of data concerning the traffic demand, its elasticity, and the travel times, making these pieces of information available to the system designer. However, the mathematical theory of traffic equilibria typically assumes a fixed travel demand that is then distributed in the network according to the equilibrium concept in question. The restriction to a single demand matrix may be useful when modeling a particular traffic scenario (e.g. a rush hour situation). However, when designing the overall network or when installing road-pricing schemes that are active for a long time period it is much more sensible to analyze the overall performance of the system, i.e., to study the average travel with respect to the empirical distribution of travel demands over a given time span. This is the main question addressed in this project.

    https://www.wiwi.hu-berlin.de/de/professuren/quantitativ/or/projects/unknown-demands/

Projects as a guest