DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Running projects

Financed by others

  • OT-AP1

    Multi-Dimensional Modeling and Simulation of Electrically Pumped Semiconductor-Based Emitters

    PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt

    Project heads: PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt
    Project members: -
    Duration: 01.01.2008 - 31.12.2019
    Status: running
    Located at: Weierstraß-Institut / Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    The aim of this joint project of WIAS and ZIB is the comprehensive and self-consistent optoelectronic modeling and simulation of electrically pumped semiconductor-based light emitters with spatially complex 3D device structure and quantum dot active regions. The required models and methods for an accurate representation of devices, such as VCSELs and single photon emitters, featuring open cavities, strong interactions between optical fields and carriers, quantum effects, as well as heating will be developed and implemented, resulting in a set of tools, that will be provided for our partners in the CRC 787.

    http://www.zib.de/projects/multi-dimensional-modeling-and-simulation-vertical-cavity-surface-emitting-lasers-vcsels / http://wias-berlin.de/projects/sfb787-b4/
  • OT-AP10

    Analysis of discretization methods for nonlinear evolution equations

    Prof. Dr. Etienne Emmrich

    Project heads: Prof. Dr. Etienne Emmrich
    Project members: -
    Duration: 01.09.2012 - 31.12.2022
    Status: running
    Located at: Technische Universität Berlin

    Description

    Nonlinear evolution equations are the mathematical models for time-dependent processes in science and engineering. Relying upon the theory of monotone operators and compactness arguments, we study existence of solutions, convergence of discretization methods, and feedback control for equations of dissipative type. We focus on nonlocality in time (distributed delay, memory effects) and interpret time-delayed feedback control as a nonlocal-in-time coupling. Applications arise in soft matter and dynamics of complex fluids such as liquid crystals.

    http://www.itp.tu-berlin.de/collaborative_research_center_910/sonderforschungsbereich_910/project_groups/a_theoretical_methods/tp_a8/