DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Dirk Peschka

Employee Matheon project OT1 and Employee representative Matheon executive board

Weierstraß-Institut für Angewandte Analysis und Stochastik
Mohrenstraße 39
10117 Berlin
+49 (0) 30 20372-443
peschka@wias-berlin.de


Research focus

Numerics
Free Boundary Problems
Mathematical Modeling
Partial Differential Equations

Projects as a project leader

  • SE-AP15

    Structure Formation in Thin Liquid-Liquid Films

    Dr. Dirk Peschka / Prof. Dr. Barbara Wagner

    Project heads: Dr. Dirk Peschka / Prof. Dr. Barbara Wagner
    Project members: -
    Duration: 01.04.2011 - 30.09.2017
    Status: completed
    Located at: Weierstraß-Institut

    Description

    The main topic of this tandem proposal is the direct comparison of results from mathematical modeling, analysis and experimental investigations of rupture,dewetting dynamics and equilibrium patterns of a thin liquid-liquid system. The experimental system uses a PS (polystyrene)/ PMMA (polymethylmethacrylate) thin bilayer of a few hundred nanometer, whose liquid properties can be tuned from Newtonian to visoelastic rheological flow behavior by varying the length of the polymer chains. On these small scales, apart from capillary forces and viscous dissipation, intermolecular forces will play an important role in the dynamics and morphology of the interfaces. The mathematical analysis and numerical simulation of adequate thin film models that will be derived from the underlying fluid mechanical equations, will be used through direct comparisons with experiments. Thus, we aim at clarifying also fundamental properties, such as equilibrium contact angles, singularity formation or dewetting rates. This shall form the basis for more complex situations involving evaporation, surfactant monolayers, and slippage, to yield the understanding crucial for many important nanofluidic problems in nature and technology ranging from rupture of the human tear film to the interface dynamics of donor/acceptor polymer solutions used in organic solar cells.

    http://www.dfg-spp1506.de/project-seemann-wagner-peschka

Projects as a member

  • OT1

    Mathematical modeling, analysis, and optimization of strained Germanium-microbridges

    Prof. Dr. Michael Hintermüller / Prof. Dr. Alexander Mielke / Prof. Dr. Thomas Surowiec / Dr. Marita Thomas

    Project heads: Prof. Dr. Michael Hintermüller / Prof. Dr. Alexander Mielke / Prof. Dr. Thomas Surowiec / Dr. Marita Thomas
    Project members: Dr. Lukas Adam / Dr. Dirk Peschka
    Duration: -
    Status: completed
    Located at: Humboldt Universität Berlin / Weierstraß-Institut

    Description

    The goal of the project Mathematical Modeling, Analysis, and Optimization of Strained Germanium-Microbridges is to optimize the design of a strained Germanium microbridge with respect to the light emission. It is a joint project with the Humboldt-University Berlin (M. Hintermüller, T. Surowiec) and the Weierstrass Institute (A. Mielke, M. Thomas), that also involves the close collaboration with the Department for Materials Research at IHP (Leibniz-Institute for Innovative High Performance Microelectronics, Frankfurt Oder).

    http://www.wias-berlin.de/projects/ECMath-OT1/
  • OT8

    Modeling, analysis, and optimization of optoelectronic semiconductor devices driven by experimental data

    Dr. Marita Thomas

    Project heads: Dr. Marita Thomas
    Project members: Dr. Dirk Peschka
    Duration: 01.06.2017 - 31.12.2018
    Status: completed
    Located at: Weierstraß-Institut

    Description

    The goal of the Matheon project D-OT8: Modeling, analysis, and optimization of optoelectronic semiconductor devices driven by experimental data is to optimize the design of a strained germanium microbridge with respect to the light emission. In the funding period June 2016-December 2018 we will develop tools for the parameter identification and optimal design of experiment for optoelectronic applications. The project also involves the close collaboration with the Department for Materials Research at IHP (Leibniz-Institute for Innovative High Performance Microelectronics, Frankfurt Oder).

    http://www.wias-berlin.de/projects/ECMath-OT8/

Projects as a guest