DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Prof. Dr. Frank Schmidt

Scientist in Charge for Application Area Optical Technologies

Zuse Institute Berlin (ZIB)
Takustr. 7
14195 Berlin
+49 (0) 30 84185 - 174
frank.schmidt@zib.de

Scientist in Charge for Application Area Optical Technologies



Projects as a project leader

  • SE6

    Plasmonic concepts for solar fuel generation

    Prof. Dr. Rupert Klein / Prof. Dr. Frank Schmidt

    Project heads: Prof. Dr. Rupert Klein / Prof. Dr. Frank Schmidt
    Project members: Dr. Sven Burger / Dr. Martin Hammerschmidt
    Duration: -
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    Artificial photosynthesis and water splitting, i.e. the sustainable production of chemical fuels like hydrogen and carbohydrates from water and carbon dioxide, has the potential to store the abundance of solar energy that reaches the earth in chemical bonds. Fundamental in this process is the conversion of electromagnetic energy. In photoelectrochemical water splitting semiconductor materials are employed to generate electron hole pairs with sufficient energy to drive the electrochemical reactions. In this project we investigate the use of metallic nanoparticles to excite plasmonic resonances by means of numerical simulations. These resonances localize electromagnetic nearfields which is beneficial for the electrochemical reactions. We develop electromagnetic models and numerical methods to facilite in depth analysis of these processes in close contact with our collaboration partners within the ECMath and the joint lab ``Berlin Joint Lab for Optical Simulation for renewable Energy research'' (BerOSE) between the ZIB, FU and HZB.

    http://www.zib.de/projects/plasmonic-concepts-solar-fuel-generation
  • OT5

    Reduced basis computation of highly complex geometries

    Prof. Dr. Frank Schmidt

    Project heads: Prof. Dr. Frank Schmidt
    Project members: Sven Herrmann
    Duration: -
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    A typical trend in nanotechnology is to extend technology from basically 2D structures to 3D structures, from simple 2D layouts to complex 3D layouts. This has mainly two reasons: (i) There are fundamental physical effects bound to 3D structures, e.g., manifold properties in reciprocal space, and (ii) economic reasons as in semiconductor industry which enforce denser packaging and ever more complex functionalities.

    The automatic optimization of nano-photonic device geometries is becoming increasingly important and, due to enhanced complexity, increasingly difficult. Typical one-way simulations become unfeasible in many-query and real-time contexts. Model reduction techniques could be a way out. Potentially they offer online speed ups in the order of magnitudes. The reported success, however, is often linked to relatively simple structured objects. Slightly more complex examples fail immediately due to geometric and mesh constrains. To show the potential in real-world examples, however, complex 3D objects including comprehensive parametrizations have to be assembled.

    The project aims to establish a link from 3D solid models obtained by CAD techniques, including full parametrizations, to reduced basis models. Establishing this critical link would facilitate systematic device geometry optimizations to be carried out using rigorous 3D electromagnetic field simulations. The main question is, how we can realize a large scale parametrization maintaining topologically equivalent meshes.

    http://www.zib.de/projects/reduced-basis-computation-highly-complex-geometries
  • OT9

    From single photon sources to tailored multi-photon states

    Dr. Sven Burger / Prof. Dr. Frank Schmidt

    Project heads: Dr. Sven Burger / Prof. Dr. Frank Schmidt
    Project members: Felix Binkowski
    Duration: 01.06.2017 - 30.09.2019
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    This project investigates methods to model and simulate nanoscale light emitters in complex environments. Semiconductor quantum dots can be used as light sources in quantum information processing. Typical applications like secure communication or quantum-computing require integration of quantum dots into optical nanostructures. For the analysis and design of such structures and their interaction with radiation emitted by the quantum dots, numerical modeling and simulations are essential. In this project we concentrate on the specific problems arising when pointlike sources like quantum dots are interacting with nanostructures which support optical resonances. We plan to develop, extend and analyze methods for efficiently simulating coupling to optical resonators with material dispersion and for methods for handling coupled resonators.

    https://www.zib.de/projects/single-photon-sources-tailored-multi-photon-states
  • OT-AP1

    Multi-Dimensional Modeling and Simulation of Electrically Pumped Semiconductor-Based Emitters

    PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt

    Project heads: PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt
    Project members: -
    Duration: 01.01.2008 - 31.12.2019
    Status: running
    Located at: Weierstraß-Institut / Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    The aim of this joint project of WIAS and ZIB is the comprehensive and self-consistent optoelectronic modeling and simulation of electrically pumped semiconductor-based light emitters with spatially complex 3D device structure and quantum dot active regions. The required models and methods for an accurate representation of devices, such as VCSELs and single photon emitters, featuring open cavities, strong interactions between optical fields and carriers, quantum effects, as well as heating will be developed and implemented, resulting in a set of tools, that will be provided for our partners in the CRC 787.

    http://www.zib.de/projects/multi-dimensional-modeling-and-simulation-vertical-cavity-surface-emitting-lasers-vcsels http://wias-berlin.de/projects/sfb787-b4/